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Abstract

Nonlinear harmonic generation in a uniform planar undulator is analyzed using
the three-dimensional Maxwell-Klimontovich equations that include both even and
odd harmonic emissions. After a certain stage of exponential growth, the dominant
nonlinear harmonic interaction is caused by strong bunching at the fundamental. As
a result, gain length, transverse profile, and temporal structure of these harmonic
radiations are eventually determined by those of the fundamental. Transversely
coherent third-harmonic radiation power is found to approach one percent of the
fundamental power level for current high-gain FEL projects, while the power of the
second-harmonic radiation is less but still significant for relatively low-energy FEL
experiments.
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1 Introduction

In a high-gain free-electron laser (FEL) employing a planar undulator, a one-

dimensional (1-D) model [1] and a three-dimensional (3-D) simulation [2] in-

dicate that strong bunching at the fundamental wavelength can drive substan-

tial harmonic bunching and sizable power levels at the harmonic frequencies.
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A 3-D analysis of harmonic generation in a uniform planar undulator has

been given in Ref. [3], for the process of coherent amplification (CA) and

self-amplified spontaneous emission (SASE). In this paper, we extend the for-

malism of Ref. [3] to include the generation of even harmonics and present

analytic formulas for computing the second and the third nonlinear harmonic

powers as well as the bunching parameters. Explicit calculations based on

current high-gain FEL projects show that the power of the transversely co-

herent third-harmonic radiation can approach one percent of the fundamental

power level, while the power of the second-harmonic radiation is less but still

significant for relatively low-energy FEL experiments.

2 Nonlinear Harmonic Generation

For an electron in a planar undulator (with the undulator parameter K), the

transverse wiggling motion in the x plane is accompanied by a longitudinal

oscillation (at twice the transverse frequency cku) about the average longitu-

dinal position ct∗. This figure-eight motion (in the comoving frame) can give

rise to harmonic emissions. Let us represent the electric field in the form

x̂
∫ ∞

−∞

dν

2
E(ν,x; z)eiνk1(z−ct), (1)

where x = (x, y) represents the transverse coordinates, ck1 =
2γ2

0cku
1+K2/2

is the

fundamental resonant frequency, and |E(ν)| is the field amplitude at frequency

ω = νk1c.

It is convenient to treat z, the distance from the undulator entrance, as the

independent variable, and change the dependent coordinate from t to θ by

θ(z) = (ku+k1)z− ck1t∗ = (ku+k1)z− ck1t+ ξ sin(2kuz), where ξ = K2/(4+
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2K2). The Maxwell equation under the paraxial approximation becomes

(

∂

∂z
+
∇2

⊥

2iνk1

)

E(ν,x; z) = − eK

ε0γ0

∫ ∞

−∞

k1dθ

2π
e−iνθeiνkuz+iνξ sin(2kuz) cos(kuz)

×
Ne
∑

j=1

δ

(

x− K

γ0ku
sin(kuz)− xβj

)

δ
(

y − yβj
)

δ(θ − θj), (2)

where Ne is the total number of electrons, and xβj and yβj describe the trans-

verse betatron oscillations. Because the transverse wiggling amplitude is nor-

mally smaller than the transverse dimension of the electron beam, we approx-

imate

δ

(

x− K

γ0ku
sin(kuz)− xβj

)

≈ δ
(

x− xβj
)

− K

γ0ku
sin(kuz)δ

′
(

x− xβj
)

, (3)

where δ′ = dδ/(dx). Since the FEL interaction and the betatron oscillation

occur on a scale much longer than the fast wiggling motion, we average Eq. (2)

over the undulator period λu with the help of the Bessel function expansion

eiνξ sin(2kuz) =
+∞
∑

p=−∞

Jp(νξ)e
i2pkuz. (4)

Inserting the first term of Eq. (3) into Eq. (2), we find that the wiggling

averaging is nonzero only when ν is close to an odd integer h = −(2p± 1) [4]

and obtain the equation for odd harmonics [3]:

(

∂

∂z
+
∇2

⊥

2ihk1

)

Eh(∆νh,x; z) =−
eKh

2ε0γ0
ei∆νhkuz

∫ k1dθ

2π
e−iνθ

×
Ne
∑

j=1

δ(x− x
β
j )δ(θ − θj), (5)

where ∆νh = ν − h ¿ 1 is the frequency detuning and the effective coupling

strength is

Kh = K(−1)(h−1)/2
[

J(h−1)/2(hξ)− J(h+1)/2(hξ)
]

, h = 1, 3, 5, ... (6)

Inserting the second term of Eq. (3) into Eq. (2), we find that the wiggling

averaging is nonzero only when ν is close to an even integer h = −(2p± 2) [5]
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and obtain the equation for even harmonics:

(

∂

∂z
+
∇2

⊥

2ihk1

)

Eh(∆νh,x; z) =− i
eKh

2ε0γ0
ei∆νhkuz

∫ k1dθ

2π
e−iνθ

× K

γ0ku

Ne
∑

j=1

δ′(x− xβj )δ(y − yβj )δ(θ − θj), (7)

where the effective coupling strength is

Kh = K(−1)(h−2)/2J ′
h/2(hξ), h = 2, 4, ... (8)

Hence, in the forward z direction of a perfectly aligned undulator trajectory,

even harmonic emissions are present due to the transverse gradient of the

electron current in the wiggling plane.

The electron distribution in phase space is described by the Klimontovich

distribution function f(θ, η,x,p; z), where η = (γ − γ0)/γ0, and p = dx/dz

are the conjugate variables to θ and x. Using the Pierce parameter ρ [6], we

introduce the following scaled variables:

z̄ =2ρkuz, η̄ =
η

ρ
, ν̄h =

∆νh
2ρ

,

x̄ =x
√

2k1kuρ, p̄ = p

√

k1
2kuρ

,

ah(ν̄h, x̄; z̄) =
−eKh

4γ20mc
2kuρ

e−i∆νhkuzEh(∆νh,x, z). (9)

Equations (5) and (7) can be written as

(

∂

∂z̄
+ iν̄h +

∇̄2
⊥

2ih

)

ah =
(

Kh

K1

)2 ∫

d2p̄
∫

dη̄
∫ 2ρdθ

2π
e−iνθ







f(z̄) odd h,
iK
γoku

∂f
∂x

even h.

(10)

The evolution of the distribution function is governed by the Klimontovich
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equation integrated along the unperturbed trajectory [3]:

f(z) = f(0) +
∫ z̄

0
ds̄

∑

odd h

∫

d(ν̄h)e
iνθ(0)ah(ν̄h, x̄

(0), s̄)
∂

∂η̄
f(θ(0), η̄, x̄(0), p̄(0); s̄)

+
∫ z̄

0
ds̄

∑

even h

∫

d(ν̄h)e
iνθ(0)ah(ν̄h, x̄

(0), s̄)
iK

γoku

∂2f

∂x∂η̄
+ c.c. . (11)

Here the summation of h is extended to include the interactions with the even

harmonics. The unperturbed trajectory is described by

θ(0)(s) =θ + φ(s̄− z̄) with φ = η̄ − (p̄2 + k̄2βx̄
2)/2,

x̄(0)(s) =x̄ cos(k̄β(s̄− z̄)) +
p̄

k̄β
sin(k̄β(s̄− z̄)),

p̄(0)(s) =− k̄βx̄ sin(k̄β(s̄− z̄)) + p̄ cos(k̄β(s̄− z̄)), (12)

where k̄β = kβ/(2kuρ) is the scaled betatron focusing strength. f(0) = f0+δf0

contains the initial fluctuation δf0 as well as the initial smooth distribution

f0, which is assumed to be

f0(η̄, p̄
2 + k̄2βx̄

2) =
1

2πσ̄2
xk̄

2
β

exp

[

−(p̄2 + k̄2βx̄
2)

2σ̄2
xk̄

2
β

]

e−η̄
2/(2σ̄2

η)

√
2πσ̄η

, (13)

where σ̄x = σx
√
2ρkuk1 and σ̄η = ση/ρ are the scaled beam size and scaled

energy spread, respectively.

Coherent harmonic radiation is generated through nonlinear harmonic inter-

actions. After a certain stage of exponential growth, the dominant nonlinear

term has been shown to be predominantly driven by the fundamental field [3].

Thus, we consider the nonlinear harmonic bunching determined by the fun-

damental field only. In the small signal regime, we keep the a1 term only in

Eq. (11) and solve it by iteration:

f(z) ≈ f0 + δf0 +
∑

all h

fh(z) + c.c. , (14)
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where

fh(z) =

[

h
∏

m=1

(

∫ s̄m−1

0
ds̄m

∫

d(ν̄m)e
i(1+2ρν̄m)θ(0)(sm)a1(ν̄m, x̄

(0)(sm); s̄m)
∂

∂η̄

)]

f0

(15)

for h ≥ 1 and s0 = z̄. We note that Eq. (14) with Eq. (15) is the approximate

solution of Eq. (11) when the nonlinear harmonic generation dominates over

the linear harmonic generation or the spontaneous harmonic emission [3]. It

becomes an increasingly good approximation as the fundamental field is sig-

nificantly amplified.

The evolution of the fundamental field is obtained by solving Eq. (10) with

h = 1 and f replaced by δf0 + f1(z) [3,7]:

a1(ν̄, x̄; z̄) = e−iµ1z̄A1(x̄)

[

∫

d2x̄′A1(x̄
′)a1(ν̄, x̄

′; 0) +
∫

d2x̄′
∫

d2p̄
∫

dη̄

× δf0(ν̄, x̄
′, p̄, η̄)

∫ 0

−∞
dτA1

(

x̄(0)
)

ei(φ−µ1)τ

]

, (16)

where µ1 is the complex growth rate of the fundamental mode A1(x̄) with the

largest imaginary part of µ1. The first term of Eq. (16) describes the process

of coherent amplification from the initial coherent signal a1(ν̄, x̄; 0), and the

second term of Eq. (16) describes the process of self-amplified spontaneous

emission from the initial shot noise δf0. Inserting Eq. (14) into Eq. (10), we find

that ah (h > 1) is determined by fh with a complex growth rate hµ1, and that

the characteristics of the nonlinear harmonic generation are all determined by

the fundamental field. While the transverse profile of the odd harmonics is

azimuthally symmetric just as the fundmental mode, the transverse profile of

the even harmonics possesses the odd symmetry in the wiggling plane (the x

plane) due to the transverse gradient effect in Eq. (10).
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3 Third-Harmonic Radiation

The most significant nonlinear harmonic generation occurs at the third har-

monic, given by Eq. (10) for h = 3 and f replaced by f3 of Eq. (15). For

a seeded FEL, we assume that the external signal matches optimal detun-

ing ν̄0 for the fundamental field (with a complex growth rate µ0 that has

the maximum imaginary part). We can set ν̄1 = ν̄0 and ν̄3 = 3ν̄0 and drop

the frequency dependence of a1 and a3 in Eq. (10). In view of Eq. (16), we

write a1 (x̄; z̄) = e−iµ0z̄A1(x̄), where A1 ≈ A0e
−w1R2

is the fundamental mode

(R = |x̄|/σ̄x = |x|/σx), and A0 is the appropriate normalization coefficient.

Thus, we can write the third nonlinear harmonic a3(x̄; z̄) = e−3iµ0z̄A3(x̄) with

the transverse profile A3 given by [3]:

[

− 3i(µ0 − ν̄0) +
∇̄2

⊥

6i

]

A3(x̄) =
(

K3

K1

)2 ∫

d2p̄
∫

dη̄

×
∫ 0

−∞
dτ1e

3i(φ−µ0)τ1A1(x̄
(0)(s1))

∂

∂η̄

∫ 0

−∞
dτ2e

2i(φ−µ0)τ2

× A1(x̄
(0)(s2))

∂

∂η̄

∫ 0

−∞
dτ3e

i(φ−µ0)τ3A1(x̄
(0)(s3))

∂f̄0
∂η̄

, (17)

where τm = s̄m− s̄m−1 for m = 1, 2, 3, and s̄0 = z̄. We have extended the lower

limit of the integral
∫

dτm to −∞ due to the exponential growth. Solving

Eq. (17) with the Hankel transformation, we obtain [3]

A3(R) =
(

K3

K1

)2

A3
0

∫ ∞

0
QdQJ0(QR)H(Q), (18)

where

H(Q) =
−1/w2

1

12(µ0 − ν̄0)− 2Q2/(3σ̄2
x)

∫ 0

−∞
dτ1

∫ 0

−∞
dτ2

∫ 0

−∞
dτ3

3τ1(3τ1 + 2τ2)(3τ1 + 2τ2 + τ3)

U

× exp

[

− σ̄
2
η

2
(3τ1 + 2τ2 + τ3)

2 − iµ0(3τ1 + 2τ2 + τ3)−
Q2

4w1S

]

, (19)
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and

S =
U

V +
∑

m=1,2,3 sin
2
(

k̄β
∑m

l=1 τl
) ,

U =

[

3
∑

m=1

sin2
(

k̄β
m
∑

l=1

τl

)] [

3
∑

m=1

cos2
(

k̄β
m
∑

l=1

τl

)]

−
[

3
∑

m=1

sin

(

k̄β
m
∑

l=1

τl

)

cos

(

k̄β
m
∑

l=1

τl

)]2

+ V 2 + 3V,

V =
1

2w1

+
i

2w1

k̄2βσ̄
2
x(3τ1 + 2τ2 + τ3). (20)

Equation (18) can be computed using a discrete Hankel transformation. In

general, the third-harmonic radiation is also transversely coherent with a

Gaussian-like profile and a narrower spot size than the fundamental (see Figs.

1 and 2).

For a SASE FEL, the fundamental radiation starts with a white noise spectrum

and has a finite gain bandwidth. In the time domain, the temporal structure

of the fundamental is chaotic with many random spikes. Due to the nonlinear

generation mechanism, the temporal structure of the third-harmonic radiation

is similar to the fundamental, but with more fluctuation from spike to spike.

It can be shown that [3]

A3(θ, R; z̄) ≈
(

K3

K1

)

[G1(θ; z̄)]
3A3

0H0e
−w3R2

, (21)

whereG1(θ; z̄) is a Gaussian random variable in θ and a slowly varying function

in z̄ for SASE (G1 = 1 for CA), H0 = (K3/K1)
∫

QdQH3(Q), and w3 char-

acterizes the transverse profile of the third-harmonic radiation. The average

radiation power can be obtained by integrating over the transverse intensity

profile and averaging over the temporal fluctuation. Thus, we have [3]

(

P3

ρPbeam

)

≈ |H0|2
16w3

1r

w3r

(

P1

ρPbeam

)3

×






1 CA,

6 SASE.
(22)
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Here Pbeam = 2πσ2
xγmc

3n0 is the total electron beam power, and w1r and w3r

are the real parts of w1 and w3. Thus, the third-harmonic radiation for a SASE

FEL has a power level roughly 6 times larger than the corresponding steady

state case, but with more shot-to-shot fluctuations compared to the funda-

mental [3]. The third-harmonic bunching parameter is obtained by averaging

(e−3iθf3) over the 6-D phase-space volume and taking the absolute value [3]:

b3 = 8w
3/2
1r

(

P1

ρPbeam

)3/2
∣

∣

∣

∣

∣

∣

∫ 0

−∞
dτ1

∫ 0

−∞
dτ2

∫ 0

−∞
dτ3

3τ1(3τ1 + 2τ2)(3τ1 + 2τ2 + τ3)

4w2
1U

× exp

[

− σ̄
2
η

2
(3τ1 + 2τ2 + τ3)

2 − iµ0(3τ1 + 2τ2 + τ3)

]

∣

∣

∣

∣

∣

∣

×






1 CA,

1.3 SASE.
(23)

For example, using the design parameters (see Table 1) for the low-energy

undulator test line (LEUTL) FEL at the Advanced Photon Source [8] and the

proposed Linac Coherent Light Source (LCLS) at Stanford Linear Accelerator

Center [9], we compute the transverse profile of the third harmonic and plot

it in comparison with the fundamental profile in Figs. 1 and 2. The third-

harmonic power and the bunching parameter are also calculated according

to Eqs. (22) and (23). Table 1 lists the results when the fundamental power

reaches one half of the saturation power, when the exponential growth process

is supposed to stop. We have compared the evolution of the third-harmonic

power for the LEUTL FEL with the steady-state MEDUSA simulation [2],

and the third-harmonic bunching for the LCLS case with the steady-state

GINGER simulation [3]. Good agreement for both cases have been found.

4 Second-Harmonic Radiation

The second-harmonic radiation can be calculated from Eq. (10) with h = 2

and f replaced by f2 of Eq. (15). One can follow the same procedure as in Sec.
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3 to solve for the second-harmonic field for CA and SASE, except that the

Hankel transformation should be replaced by the 2-D Fourier transformation

in x and y because the radiation profile has the odd symmetry in x. Since the

wiggling amplitude K/(γ0ku) is usually much smaller than the rms beam size

σx, the power of the second-harmonic radiation is less than that of the third

harmonic. We can estimate the power of the second-harmonic radiation by

P2

b22
≈
(

K

γ0kuσx

)2 (
K2

K3

)2 P3

b23
. (24)

Here the second harmonic bunching parameter b2 is obtained by averaging

(e−2iθf2) over the 6-D phase-space volume and taking the absolute value

b2 =4w1r

(

P1

ρPbeam

)

∣

∣

∣

∣

∣

∣

∫ 0

−∞
dτ1

∫ 0

−∞
dτ2

2τ1(2τ1 + τ2)

4w2
1U2

× exp

[

− σ̄
2
η

2
(2τ1 + τ2)

2 − iµ0(2τ1 + τ2)

]

∣

∣

∣

∣

∣

∣

, (25)

where

U2 =

[

2
∑

m=1

sin2
(

k̄β
m
∑

l=1

τl

)] [

2
∑

m=1

cos2
(

k̄β
m
∑

l=1

τl

)]

−
[

2
∑

m=1

sin

(

k̄β
m
∑

l=1

τl

)

cos

(

k̄β
m
∑

l=1

τl

)]2

+ V 2
2 + 2V2,

V2 =
1

2w1

+
i

2w1

k̄2βσ̄
2
x(2τ1 + τ2). (26)

Using the LEUTL and LCLS examples, we calculate the second-harmonic

bunching and estimate the second-harmonic power by Eq. (24). From Table

1, we see that a significant amount of second-harmonic radiation can be gen-

erated in the LEUTL FEL because the wiggling amplitude (proportional to

1/γ0) is about one-third of the beam size. However, for x-ray FELs employing

a high-energy electron beam, such as the LCLS, the second-harmonic radiation

is much reduced.
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5 Conclusion

We have presented a perturbation scheme to analyze the 3-D evolution of

the nonlinear harmonic radiation in coherent amplification and self-amplified

spontaneous emission, with explicit calculation of second-harmonic and third-

harmonic radiation based on current high-gain FEL projects. The transverse

coherence and the substantial power level of the third harmonic could be useful

in extending the short wavelength reach of a high-gain FEL.
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Fig. 1. Transverse profiles of the LEUTL third harmonic (I3), the fundamental (I1),
and the electron beam (Ie) as functions of the transverse position in units of the
electron beam size.

Fig. 2. Transverse profiles of the LCLS third harmonic (I3), the fundamental (I1),
and the electron beam (Ie) as functions of the transverse position in units of the
electron beam size.
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Table 1
Nonlinear Harmonic Generation for SASE FELs

LEUTL LCLS

E-beam and Undulator

energy 220 MeV 14.4 GeV

peak current 150 A 3400 A

normalized emittance 5 µm 1.5 µm

energy spread 0.1% 0.02%

average beta function 1.5 m 18 m

undulator period 3.3 cm 3 cm

undulator strength 3.1 3.71

Fundamental Radiation

resonant wavelength 518 nm 1.5 Å

power gain length 0.67 m 6.1 m

saturation power (Psat) 70 MW 8 GW

Harmonics at P1 = Psat/2

3rd-harmonic power 3.6 MW 15 MW

3rd-harmonic bunching 0.39 0.018

2nd-harmonic power 550 kW 15 kW

2nd-harmonic bunching 0.47 0.056
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